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Abstract

In this paper, we develop a series of general integral formulae for compact spacelike hyper-
surfaces with hyperplanar boundary in the(n + 1)-dimensional Minkowski space–timeLn+1. As
an application of them, we prove that the only compact spacelike hypersurfaces inL

n+1 having
constant higher order mean curvature and spherical boundary are the hyperplanar balls (with zero
higher order mean curvature) and the hyperbolic caps (with nonzero constant higher order mean
curvature). This extends previous results obtained by the first author, jointly with Pastor, for the case
of constant mean curvature [J. Geom. Phys. 28 (1998) 85] and the case of constant scalar curvature
[Ann. Global Anal. Geom. 18 (2000) 75]. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of spacelike hypersurfaces in Lorentzian space–times has been of increasing
interest in recent years from both physical and mathematical points of view. From a phys-
ical point of view, such interest is motivated by their role in different problems of general
relativity. For instance, Lichnerowicz [14] showed that zero mean curvature spacelike hy-
persurfaces are convenient as initial data for solving the Cauchy problem of the Einstein
equations. We also refer to [8,12,15,20] and references therein for other reasons justifying
that interest.
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From a mathematical point of view, spacelike hypersurfaces are also interesting because
of their nice Bernstein-type properties. Recall that the Bernstein problem for maximal
hypersurfaces in the Minkowski space–timeLn+1 was first introduced by Calabi [10], where
he found that, forn ≤ 4, the only entire solutions to the maximal hypersurface equation in
L
n+1 are affine functions. This result was extended to the generaln-dimensional case by

Cheng and Yau [11], who proved that the only complete maximal hypersurfaces inL
n+1

are the spacelike hyperplanes. On the other hand, Aiyama [1] and Xin [21] simultaneous
and independently characterized the spacelike hyperplanes as the only complete spacelike
hypersurfaces with constant mean curvature inLn+1 whose Gauss map image is bounded
in the hyperbolic image (see also [17] for a weaker first version of this result by Palmer).

In a series of recent papers, the first author, jointly with Pastor, studied the geometry of
compact spacelike hypersurfaces (necessarily with non-empty boundary) in the Minkowski
space–time. In particular, in [5], they showed that the only such hypersurfaces having
constant mean curvature and round spherical boundary are the hyperplanar balls and the
hyperbolic caps [5] (see also [3] for a first two-dimensional version of this result). As for
the case of the scalar curvature, they characterized the hyperbolic caps inL

n+1 as the only
compact spacelike hypersurfaces in the Minkowski space–time with nonzero constant scalar
curvature and spherical boundary [6].

Their approach to obtain those results in [5,6] was based on the use of certain integral
formulae for the case, where either the mean curvature or the scalar curvature is constant.
In this paper, we will develop a series of general integral formulae for compact spacelike
hypersurfaces with hyperplanar boundary inLn+1, for the case where a higher orderrth
mean curvature is constant, 1≤ r ≤ n. Let us recall that the higher order mean curvatures
Hr of a hypersurface are the natural generalization of mean and scalar curvature. Indeed,
H1 is simply the (extrinsic) mean curvature of the hypersurface andH2 is, up to a constant,
its (intrinsic) scalar curvature (for details, see Section 2). In particular, we will derive a flux
formula (see Proposition 1 and formula (23)) which extends to the general case previous flux
formulae given in [5] whenr = 1 and in [6] whenr = 2 (we also refer to the recent paper by
Bahn and Hong [7] for another interesting flux-type formula for spacelike hypersurfaces in
L
n+1, with interesting applications to isoperimetric and some other geometric inequalities).
As a first application of this new flux formula, we are able to extend and generalize the

characterization theorem given in [6] for the case of scalar curvature to the case of any
intrinsic curvature. Specifically, we will obtain the following uniqueness result.

Theorem 1. The only compact spacelike hypersurfaces in the Minkowski space–time with
constant intrinsic higher order mean curvatureHr (2 ≤ r ≤ n, r even) and spherical
boundary are the hyperplanar balls (withHr = 0) and the hyperbolic caps (with positive
constantHr ).

Besides, we also develop a new integral inequality (see Proposition 2) which extends an
inequality given in [5] whenr = 1. Using this inequality, we are also able to extend our
uniqueness theorem to the case of any extrinsic curvature.

Theorem 2. The only compact spacelike hypersurfaces in the Minkowski space–time with
constant extrinsic higher order mean curvatureHr (1 ≤ r ≤ n, r odd) and spherical
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boundary are the hyperplanar balls (withHr = 0) and the hyperbolic caps (with nonzero
constantHr ).

2. Preliminaries

LetLn+1 denote the(n + 1)-dimensional Minkowski space–time, that is, the real vector
spaceRn+1 endowed with the Lorentzian metric

〈, 〉 = −dx2
0 + dx2

1 + · · · + dx2
n,

where(x0, x1, . . . , xn) are the canonical coordinates inRn+1. A smooth immersionx :
Mn → L

n+1 of a n-dimensional connected manifoldM is said to be aspacelike hyper-
surfaceif the induced metric viax is a Riemannian metric onM, which, as usual, is also
denoted by〈, 〉. Observe that(1,0, . . . ,0) is a unit timelike vector field globally defined
onLn+1, which determines a time-orientation onLn+1. Thus, we can choose a unique unit
normal vector fieldN onM which is a future-directed timelike vector inLn+1, and hence
we may assume thatM is oriented byN .

In order to set up the notation to be used later, let us denote by∇0 and∇ the Levi–Civita
connections ofLn+1 andM, respectively. Then the Gauss and Weingarten formulae forM

in Ln+1 are written, respectively, as

∇0
XY = ∇XY − 〈AX, Y 〉N, (1)

and

A(X) = −∇0
XN, (2)

for all tangent vector fieldsX, Y ∈ X (M), whereA stands for the shape operator with
respect toN .

Associated to the shape operator ofM there aren algebraic invariants, which are the
elementary symmetric functions of its principal curvaturesk1, . . . , kn given by

Sr = Sr(k1, . . . , kn) =
∑

i1<···<ir

ki1 . . . kir , 1 ≤ r ≤ n.

Following [2], we define the‘r’th mean curvatureHr of the spacelike hypersurface by(
n

r

)
Hr = (−1)rSr (k1, . . . , kn) = Sr(−k1, . . . ,−kn), 1 ≤ r ≤ n.

Observe that whenr = 1,H1 = −(1/n) tr(A) = H is the mean curvature ofM. The choice
of the sign(−1)r in the above definition ofHr is motivated by the fact that in that case the
mean curvature vector is given byH = HN. Therefore,H(p) > 0 at a pointp ∈ M if and
only if H(p) is in the time-orientation determined byN(p). On the other hand, whenr = n,
Hn = (−1)n det(A) defines the Gauss–Kronecker curvature of the spacelike hypersurface,
and forr = 2,H2 is, up to a constant, the scalar curvatureS of M, sinceS = −n(n−1)H2.
In general, it follows from Gauss equation of the hypersurface that whenr is oddHr is



362 L.J. Aĺias, J. Miguel Malacarne / Journal of Geometry and Physics 41 (2002) 359–375

extrinsic (and its sign depends on the chosen orientation), while whenr is evenHr is an
intrinsic geometric quantity.

Throughout this work, we will deal withcompactspacelike hypersurfaces immersed
in Ln+1. Let us remark that there exists no closed (compact without boundary) spacelike
hypersurfaces inLn+1. To see this, leta ∈ Ln+1 be a fixed arbitrary vector, and consider
the height function〈a, x〉 defined on the spacelike hypersurfaceM. The gradient onM of
〈a, x〉 is

∇〈a, x〉 = aT = a + 〈a,N〉N,

whereaT ∈ X (M) is tangent toM. In fact, it is easy to see thata = aT − 〈a,N〉N , and
for anyX ∈ X (M), we have

〈∇〈a, x〉, X〉 = X〈a, x〉 = 〈∇0
Xa, x〉 + 〈a,∇0

Xx〉 = 〈a,X〉.
From this, we conclude that

|∇〈a, x〉|2 = 〈a, a〉 + 〈a,N〉2 ≥ 〈a, a〉.
In particular, whena is spacelike the height function has no critical points inM, so that
M cannot be closed. Therefore, every compact spacelike hypersurfaceM necessarily has
non-empty boundary∂M. As usual, ifΣ is an(n − 1)-dimensional closed submanifold in
L
n+1, a spacelike hypersurfacex : M → L

n+1 is said to be a hypersurfacewith boundary
Σ if the restriction of the immersionx to the boundary∂M is a diffeomorphism ontoΣ .

In what follows,x : M → L
n+1 will be a compact spacelike hypersurface with bound-

ary ∂M, and we will considerM oriented by a unit timelike normal vector fieldN . The
orientation ofM induces a natural orientation on∂M as follows: a basis{v1, . . . , vn−1}
for Tp(∂M) is positively oriented if and only if{u, v1, . . . , vn−1} is a positively oriented
basis forTpM, wheneveru ∈ TpM is outward pointing. We will denote byν the outward
pointing unit conormal vector field along∂M.

A specially interesting case occurs when the boundaryΣ = x(∂M) is contained in a
fixed hyperplaneΠ of Ln+1. We will refer to it saying thatM hashyperplanarboundary.
SinceΣ is closed, it follows that the hyperplaneΠ is spacelike. We can assume without
loss of generality thatΠ passes through the origin andΠ = a⊥, for a unit timelike vector
a ∈ Ln+1 in the same time-orientation asN . The following lemma and its corollary below
will be essential later on.

Lemma 1 (Existence of an elliptic point).Let x : M → L
n+1 be a spacelike immersion

of a compact hypersurface with hyperplanar boundaryΣ = x(∂M), and assume that
Σ is contained in a hyperplaneΠ = a⊥, ‘a’ being a unit timelike vector in the same
time-orientation as N. Then there exists a pointp0 ∈ int(M) where (after an appropriate
choice of orientation on M) all the principal curvatures are negative, unless the hypersurface
is entirely contained in the hyperplaneΠ .

Proof. Let us assume that the hypersurface is not entirely contained in the hyperplaneΠ .
Then, there exists a pointp ∈ int(M), where〈x(p), a〉 �= 0. We may assume without
loss of generality that〈x(p), a〉 < 0. Otherwise, just replacea by −a and change the
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orientation onM (recall that we are assuming that the timelike vectorsa andN are in the
same time-cone). Letb ∈ Π be the projection ofx(p) ontoΠ , b = x(p) + 〈x(p), a〉a,
and let us denote byHn+(b, ρ) the connected component of〈q − b, q − b〉 = −ρ2 which
satisfies〈q − b, a〉 = 〈q, a〉 < 0, that is,

H
n
+(b, ρ) = {q ∈ Ln+1 : 〈q − b, q − b〉 = −ρ2, 〈q, a〉 < 0}.

SinceM is compact,Hn+(b, ρ) does not intersectx(M) for largeρ. As ρ decreases, there
exists an interior pointp0 ∈ int(M), whereHn+(b, ρ) touchesx(M). Such a pointp0
satisfies〈x(p0), a〉 < 0 and it is a local maximum point for the functionu = 〈x −b, x −b〉
defined onM. In particular, its gradient vanishes atp0, ∇u(p0) = 0, and its Hessian
satisfies

∇2up0(v, v) ≤ 0

for every tangent vectorv ∈ Tp0M. It is easy to see that∇u = 2(x − b)T, where

(x − b)T = x − b + 〈x − b,N〉N
is tangent toM. Taking covariant derivative here and using Gauss (Eq. (1)) and Weingarten
formulae (Eq. (2)), we also see that

∇2u(X, Y ) = 2〈X, Y 〉 − 2〈x − b,N〉〈AX, Y 〉, for X, Y ∈ X (M).

From∇u(p0) = 0, it follows that

〈x(p0) − b,N(p0)〉 = − 〈x(p0), a〉
〈N(p0), a〉 < 0. (3)

Besides, let{e1, . . . , en} be a basis of principal directions atp0 satisfyingAp0(ei) =
ki(p0)ei . Then

∇2up0(ei, ei) = 2[1 − 〈x(p0) − b,N(p0)〉ki(p0)] ≤ 0,

which from Eq. (3) gives

ki(p0) ≤ 1

〈x(p0) − b,N(p0)〉 < 0. �

Corollary 1. Let x : M → L
n+1 be a spacelike immersion of a compact hypersurface

bounded by an(n − 1)-dimensional submanifoldΣ = x(∂M), and assume thatΣ is con-
tained in a hyperplaneΠ = a⊥, ‘a’ being a unit timelike vector in the same time-orientation
as N. If the ‘r’th mean curvatureHr is constant, then eitherHr = 0 and the hypersurface
is just the hyperplanar domain inΠ bounded byΣ , or (after an appropriate choice of
orientation on M)Hr is positive and it holds that

H1 ≥ H
1/2
2 ≥ · · · ≥ H

1/(r−1)
r−1 ≥ H

1/r
r > 0.

Besides, equality holds at any stage only at umbilical points.
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Proof. Let us assume that the hypersurface is not the hyperplanar domain inΠ bounded
by Σ . Then, there exists a pointp0 ∈ M, where all the principal curvatures are neg-
ative. The result then follows from the proof of [16] (Lemma 1) (see also [9] (Section
12)), taking into account the sign convention in our definition of the higher order mean
curvatures. �

3. A flux formula

In this section, we will derive a flux formula for compact spacelike hypersurfaces in the
Minkowski space–time. In order to do that, we will introduce the corresponding Newton
transformationsTr : X (M) → X (M) associated with the second fundamental form, which
according to our definition of therth mean curvatures are given by

Tr =
(
n

r

)
HrI +

(
n

r − 1

)
Hr−1A + · · · +

(
n

1

)
H1A

r−1 + Ar,

whereI denotes the identity inX (M), or inductively,

T0 = I and Tr =
(
n

r

)
HrI + ATr−1. (4)

Observe that the characteristic polynomial ofA can be written in terms of theHr ’s as

det(tI − A) =
n∑

r=0

(
n

r

)
Hrt

n−r , (5)

whereH0 = 1 by definition. By Cayley–Hamilton theorem, this implies thatTn = 0.
Let us remark thatTr = (−1)rPr , wherePr is the classicalrth Newton transformation

defined by Reilly in [18] (see also [19] for a more accesible modern treatment). Observe
that the Newton transformationsTr are all self-adjoint operators which commute with the
shape operatorA. Besides, we have the following nice properties ofTr .

1. If {e1, . . . , en} is a local orthonormal frame onM which diagonalizesA, Aei = kiei ,
then it also diagonalizes eachTr , andTrei = µi,rei with

µi,r = (−1)rSr (k1, . . . , k̂i , . . . , kn) = (−1)r
∑

i1<···<ir ,ij �=i

ki1, . . . , kir .

2. For each 1≤ r ≤ n − 1, tr(Tr) = (r + 1)

(
n

r + 1

)
Hr , and

tr(ATr ) = −(r + 1)

(
n

r + 1

)
Hr+1. (6)

3. For everyX ∈ X (M) and for each 1≤ r ≤ n − 1,

tr(Tr∇XA) = −
(

n

r + 1

)
〈∇Hr+1, X〉.
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4. The Newton transformationsTr are divergence free, that is,

divM(Tr) = tr(X → (∇XTr)X) = 0. (7)

Let Y ∈ X (Ln+1) be a Killing vector field onLn+1. We can write the restriction ofY toM

asY = Y T − 〈Y,N〉N , whereY T ∈ X (M) is tangent toM. Our objective is to compute
divM(TrY

T). Taking into account that∇XTr is self-adjoint for anyX ∈ X (M), an easy
computation using Eq. (7) shows that

divM(TrY
T) = 〈divM(Tr), Y 〉 +

n∑
i=1

〈∇ei Y
T, Trei〉 =

n∑
i=1

〈∇ei Y
T, Trei〉, (8)

where{e1, . . . , en} is a local orthonormal frame onM. Let X be a tangent vector field to
M. From Killing equation, we know that

〈∇0
TrX

Y,X〉 + 〈∇0
XY, TrX〉 = 0,

which gives

〈∇TrXY T, X〉 + 〈∇XY T, TrX〉 = −2〈Y,N〉〈ATrX,X〉. (9)

Computing in a local orthonormal frame onM that diagonalizesA, and henceTr , we have
by (1) above that

〈∇Trei Y
T, ei〉 = µi,r 〈∇ei Y

T, ei〉 = 〈∇ei Y
T, Trei〉,

so that from Eq. (9)

〈∇ei Y
T, Trei〉 = −〈Y,N〉〈ATrei , ei〉.

Therefore, we conclude from Eq. (8), using also Eq. (6), that

divM(TrY
T) = −〈Y,N〉tr(ATr ) = (r + 1)

(
n

r + 1

)
Hr+1〈Y,N〉. (10)

Now integrating Eq. (10) onM, we have by the divergence theorem that∮
∂M

〈Trν, Y 〉 ds =
∫
M

divM(TrY
T)dM = (r + 1)

(
n

r + 1

)∫
M

Hr+1〈Y,N〉 dM,

for every 0≤ r ≤ n − 1. (11)

Here, dM stands for then-dimensional volume element ofM with respect to the induced
metric and the chosen orientation, and ds is the induced(n−1)-dimensional volume element
on ∂M.

On the other hand, considerD is a compact orientable hypersurface ofLn+1 with smooth
boundary that satisfies∂D = ∂M. Assume thatM ∪ D is an orientedn-cycle ofLn+1.
Let nD be the unit normal that orientsD. From the Alexander duality theorem, we have
that M ∪ D = ∂Ω, whereΩ is a compact oriented domain immersed inLn+1. From
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Killing equation again,〈∇0
ZY,Z〉 = 0 for all Z ∈ X (Ln+1), from which it follows that

divLn+1Y = 0. Therefore, from divergence theorem, we have∫
D

〈Y, nD〉 dA = −
∫
M

〈Y,N〉 dM. (12)

Here, dA stands for then-dimensional volume element ofD with respect to the induced
metric and the chosen orientation.

Therefore, in the case where the hypersurface has some higher order mean curvatureHr

constant, we obtain from Eqs. (11) and (12), the followingflux formulafor immersed space-
like hypersurfaces with constant higher order mean curvature in the Minkowski space–time.
The corresponding formula for hypersurfaces in Euclidean space can be found in [19]; see
also [4] for the others Riemannian space forms.

Theorem 3. Let x : M → L
n+1 be a spacelike immersion of a compact hypersurface

with boundary∂M, and let ‘D’ be a compact orientable hypersurface ofLn+1 with smooth
boundary that satisfies∂D = ∂M. Let nD be the unit normal that orients D. If the ‘r’th
mean curvatureHr is constant,1 ≤ r ≤ n, then for any Killing vector field Y onLn+1∮

∂M

〈Tr−1ν, Y 〉 ds = −r

(
n

r

)
Hr

∫
D

〈Y, nD〉 dA. (13)

Here,ν is the outward pointing conormal to M along∂M.

Let us assume from now on thatM has hyperplanar boundary. We may assume without
loss of generality that the boundary is contained in a hyperplaneΠ which passes through
the origin, andΠ = a⊥, for a unit timelike vectora ∈ Ln+1 in the same time-orientation as
N . In this situation, by considering the constant Killing fieldY = a, we have thatnD = −a,
and hence we know from Eq. (12) that

vol(D) = −
∫
M

〈a,N〉 dM. (14)

This allows us to state the following result, which generalizes Proposition 2 in [5].

Proposition 1. Let x : M → L
n+1 be a spacelike immersion of a compact hypersurface

bounded by an(n − 1)-dimensional embedded submanifoldΣ = x(∂M), and assume that
Σ is contained in a hyperplaneΠ ofLn+1. Let ‘a’ be the unit timelike vector inLn+1 such
that Π = a⊥ which is the same time-orientation as N. If the ‘r’th mean curvatureHr is
constant, then the(r − 1)-flux∮

∂M

〈Tr−1ν, a〉 ds

does not depend on the hypersurface, but only on the value ofHr andΣ . Actually,∮
∂M

〈Tr−1ν, a〉 ds = −r

(
n

r

)
Hr vol(D), (15)

where D is the domain inΠ bounded byΣ .
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4. An essential auxiliary lemma

In this section, our aim is to compute the term〈Trν, a〉 on the boundary ofM in terms
of the curvatures of the boundary. To do that, let{e1, . . . , en−1} be a (locally defined)
positively oriented frame field along∂M. Since〈a, x〉 = 0 on the boundary, then〈a, ei〉 =
0 for every 1≤ i ≤ n − 1, andaT = 〈ν, a〉ν on ∂M. On the other hand, letη be the
outward pointing unitary normal toΣ in Π . Observe thatη = e1 × · · · × en−1 × a, and
similarly ν = e1 × · · · × en−1 × N , with the conditionals det(η, e1 . . . , en−1, a) = 1 and
det(ν, e1 . . . , en−1, N) = 1. Hence, we compute

〈ν, η〉 = det(ν, e1, . . . , en−1, a) = det(ν, e1, . . . , en−1, 〈ν, a〉ν − 〈a,N〉N)

= −〈a,N〉det(ν, e1, . . . , en−1, N) = −〈a,N〉,
and, similarly,

〈N, η〉 = −〈ν, a〉.
Let AΣ denote the shape operator ofΣ (as an(n − 1)-dimensional hypersurface of the

Euclidean spaceΠ ≡ En) with respect to the normalη. Note that the inclusionΠ ⊂ Ln+1

is totally geodesic, and so we have

∇0
ej
ei =

n−1∑
k=1

〈∇0
ej
ei , ek〉ek + 〈∇0

ej
ei , ν〉ν − 〈A(ei), ej 〉N, for every 1≤ i, j ≤ n − 1

and also

∇0
ej
ei =

n−1∑
k=1

〈∇0
ej
ei , ek〉ek + 〈AΣ(ei), ej 〉η,

so that

〈Aei , ej 〉 = 〈AΣei, ej 〉〈η,N〉 = −〈AΣei, ej 〉〈ν, a〉,
since we have already observed that〈η,N〉 = −〈ν, a〉.

We now suppose that the basis{e1, . . . , en−1} on the boundary∂M is chosen such that it
is formed by the eigenvectors ofAΣ , with eigenvalues given byτi , that is

AΣei = τiei, 1 ≤ i ≤ n − 1.

Hence,〈Aei , ej 〉 = 0 wheni �= j , and for eachp ∈ ∂M, the matrix ofA in the orthonormal
basis{e1, . . . , en−1, ν} of TpM is given by

A =




−τ1〈ν, a〉 0 · · · 0 〈Aν, e1〉
0 −τ2〈ν, a〉 · · · 0 〈Aν, e2〉
...

...
. . .

...
...

0 0 · · · −τn−1〈ν, a〉 〈Aν, en−1〉
〈Aν, e1〉 〈Aν, e2〉 · · · 〈Aν, en−1〉 〈Aν, ν〉




.
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This expression invites us to compute the characteristic polynomial ofA. To do that, we
begin by observing that the following recursive formula holds:

,k = (t + τk〈ν, a〉),k−1 − 〈Aν, ek〉2
k−1∏
j=1

(t + τj 〈ν, a〉), for everyk, 1 ≤ k≤n−1,

where,k = det(tIk+1−Λk)denotes the characteristic polynomial of the(k+1)-dimensional
matrix

Λk =




−τ1〈ν, a〉 0 · · · 0 〈Aν, e1〉
0 −τ2〈ν, a〉 · · · 0 〈Aν, e2〉
...

...
. . .

...
...

0 0 · · · −τk〈ν, a〉 〈Aν, ek〉
〈Aν, e1〉 〈Aν, e2〉 · · · 〈Aν, ek〉 〈Aν, ν〉




.

In particular,,n−1 = det(tIn − A) is the characteristic polynomial ofA, and therefore,
applying a simple induction argument, we obtain

det(tIn−A) = (t−〈Aν, ν〉)
n−1∏
i=1

(t+τi〈ν, a〉)−
n−1∑
i=1

〈Aν, ei〉2
n−1∏

j=1,j �=i

(t+τj 〈ν, a〉)

= (t−〈Aν, ν〉)
n−1∑
i=0

si〈ν, a〉i tn−1−i−
n−1∑
i=1

〈Aν, ei〉2
n−2∑
j=0

sj (τ̂i )〈ν, a〉j tn−2−j ,

wheresr (sr (τ̂i ), respectively) are the symmetric functions ofτ1, . . . , τn−1, (τ1, . . . , τ̂i , . . . ,

τn−1, respectively), and, as usual,s0 = 1 by definition. Comparing the terms of above
polynomials, we conclude from Eq. (5) that(

n

r

)
Hr = (−1)rSr = sr 〈ν, a〉r − sr−1〈ν, a〉r−1〈Aν, ν〉

−〈ν, a〉r−2
n−1∑
i=1

sr−2(τ̂i)〈Aν, ei〉2, (16)

wheres−1 = sn = 0 by definition. Now, we are ready to state and prove the following
essential auxiliary result.

Lemma 2. Let x : M → L
n+1 be a spacelike hypersurface with hyperplanar boundary

Σ = x(∂M), and assume thatΣ is contained in a hyperplaneΠ = a⊥, ‘a’ being the unit
timelike vector which is the same time-orientation as N. Then

〈Trν, a〉 = sr 〈ν, a〉r+1, for every0 ≤ r ≤ n − 1, (17)

wheresr are the symmetric functions of the eigenvalues ofAΣ , the shape operator ofΣ in
Π with respect to the outward pointing unitary normal.
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Proof. We first note that Eq. (17) trivially holds forr = 0. Besides, observe that

〈Trν, a〉 = 〈Trν, a
T〉 = 〈ν, a〉〈Trν, ν〉. (18)

Hence, it suffices to compute〈Trν, ν〉 whenr ≥ 1. For this, we use induction onr. For
r = 1, Eq. (16) becomesnH1 = s1〈ν, a〉 − 〈Aν, ν〉, which implies〈T1ν, ν〉 = s1〈ν, a〉.
Suppose that

〈Tjν, ν〉 = sj 〈ν, a〉j , for all j, 1 ≤ j < r. (19)

Therefore, from the inductive definition ofTr in Eqs. (4) and (19), we have

〈Trν, ν〉 =
(
n

r

)
Hr + 〈Tr−1ν,Aν〉

=
(
n

r

)
Hr +

n−1∑
i=1

〈Aν, ei〉〈Tr−1ν, ei〉 + 〈Aν, ν〉〈Tr−1ν, ν〉

=
(
n

r

)
Hr +

n−1∑
i=1

〈Aν, ei〉〈Tr−1ν, ei〉 + sr−1〈ν, a〉r−1〈Aν, ν〉. (20)

On the other hand, we also know that

Aei = −τi〈ν, a〉ei + 〈Aν, ei〉ν,
so that from our induction hypothesis Eqs. (4) and (19), we have

〈Tjν, ei〉 = 〈Tj−1ν,Aei〉 = −τi〈ν, a〉〈Tj−1ν, ei〉 + sj−1〈ν, a〉j−1〈Aν, ei〉,
for every 0≤ j ≤ r.

This implies by a recursive argument that

〈Tr−1ν, ei〉 =

r−2∑

j=0

(−1)j τ j
i sr−2−j


 〈ν, a〉r−2〈Aν, ei〉. (21)

Now, it is not difficult to see that

sm(τ̂i) =
m∑

j=0

(−1)j τ j
i sm−j , for every 1≤ m ≤ n − 1,

so that Eq. (21) becomes

〈Tr−1ν, ei〉 = sr−2(τ̂i)〈ν, a〉r−2〈Aν, ei〉.

Using this in Eq. (20), together with the expression for

(
n

r

)
Hr given in Eq. (16), we

conclude that

〈Trν, ν〉 = sr 〈ν, a〉r ,
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which jointly with Eq. (18) gives the desired formula (17). This finishes the proof of
Lemma 2. �

Let us denotehr by the rth mean curvature of the boundaryΣ as an Euclidean
(n − 1)-dimensional hypersurface ofΠ ≡ En. That is(

n − 1
r

)
hr = sr , for every 1≤ r ≤ n − 1.

Then, using Lemma 2 in formula (11) withY = a, we obtain that∮
∂M

hr−1〈ν, a〉r ds = n

∫
M

Hr 〈a,N〉 dM, for every 1≤ r ≤ n, (22)

since

(
n

r

)
= n

r

(
n − 1
r − 1

)
. In particular, if therth mean curvatureHr is constant, Lemma

2 allows us to rewrite our flux formula (15) as∮
∂M

hr−1〈ν, a〉r ds = −nHr vol(D). (23)

Remark 1. It is interesting to remark that, in contrast to the Euclidean case, Eq. (23)
does not imply here any restriction on the possible values of the constantrth mean cur-
vature. For instance, in [4], it is shown that ifΣ = S

n−1 is an (n − 1)-dimensional
sphere of radius one andM is an immersed compact hypersurface in the Euclidean space
bounded bySn−1 whoserth mean curvatureHr is constant, then we have that 0≤
|Hr | ≤ 1. However, in the case of the Minkowski space–time, the family of hyperbolic
caps

Mλ = {x ∈ Ln+1 : 〈x, x〉 = −λ2,0 < x0 ≤
√

1 + λ2}, with 0 < λ < ∞,

describes a family of spacelike compact hypersurfaces inLn+1 bounded bySn−1 with
constantrth mean curvatureHr(λ) = 1/λr .

5. Hypersurfaces with constant intrinsic higher order mean curvature

We are now in a position to prove our Theorem 1. Suppose that therth mean curvatureHr

is constant, wherer is even, and that the boundaryΣ = x(∂M) is a round sphereSn−1(ρ)

of radiusρ > 0. In that case, we have thatτi = −1/ρ, for everyi = 1, . . . , n − 1, so that
hr−1 = −1/ρr−1. Besides, vol(D) = ρAρ/n, whereAρ = area(Sn−1(ρ)). Then our flux
formula (23) becomes∮

∂M

〈ν, a〉r ds = ρrHrAρ. (24)

We may assume without loss of generality that the constantHr is positive. Otherwise, we
know from Corollary 1 that the hypersurface is a hyperplanar ball. By the Holder inequality,
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we obtain from Eq. (24) that∣∣∣∣
∮
∂M

〈ν, a〉 ds

∣∣∣∣ ≤
(∮

∂M

〈ν, a〉r ds

)1/r

A(r−1)/r
ρ = ρH

1/r
r Aρ. (25)

On the other hand, we know also know by Corollary 1 that

H1 ≥ H
1/r
r > 0,

with equality only at umbilical points. Therefore, we have

nH1(−〈a,N〉) ≥ nH1/r
r (−〈a,N〉) > 0, (26)

with equality if and only ifM is totally umbilical. Besides, we also know from Eq. (22) that∮
∂M

〈ν, a〉 ds = n

∫
M

H1〈a,N〉 dM < 0.

Then, integrating Eq. (26) onM and using Eq. (14), we deduce that∣∣∣∣
∮
∂M

〈ν, a〉 ds

∣∣∣∣= n

∫
M

H1(−〈a,N〉)dM ≥ nH1/r
r

∫
M

(−〈a,N〉)dM

= nH1/r
r vol(D) = ρH

1/r
r Aρ, (27)

with equality if and only ifM is totally umbilical. Finally, from Eq. (25), we have the
equality in Eq. (27) and thenM must be umbilical. This finishes the proof of our
result.

6. An integral inequality

In this section, we will derive an integral inequality which, jointly with our flux formula
in Proposition 1, will allow us to prove our result for the case of extrinsic higher order mean
curvatures. To do that, observe that from Eq. (10) withr = 0, we know that

divM(Y T) = nH1〈Y,N〉,
for a Killing vector fieldY onLn+1, and also

divM(TrY
T) = (r + 1)

(
n

r + 1

)
Hr+1〈Y,N〉.

Therefore, ifHr is constant, we conclude that

divM

(
TrY

T−n−r

n

(
n

r

)
HrY

T
)

= −(n − r)

(
n

r

)
(H1Hr − Hr+1)〈Y,N〉. (28)

This equation is the key for the proof of the following result, which generalizes and integral
inequality given in [5] (Proposition 3). It is worth pointing out that Eq. (28) is meaningful



372 L.J. Aĺias, J. Miguel Malacarne / Journal of Geometry and Physics 41 (2002) 359–375

whenr ≤ n − 1, since forr = n, we know thatTn = 0 and both sides of Eq. (28) trivially
vanish.

Proposition 2. Let x : M → L
n+1 be a spacelike immersion of a compact hypersurface

bounded by an(n − 1)-dimensional embedded submanifoldΣ = x(∂M), and assume that
Σ is contained in a hyperplaneΠ of Ln+1. Let ‘a’ be the unit timelike vector inLn+1 such
that Π = a⊥ which is the same time-orientation as N. If the ‘r’th mean curvatureHr is
constant, with1 ≤ r ≤ n − 1, then∮

∂M

hr 〈ν, a〉r+1 ds ≥ Hr

∮
∂M

〈ν, a〉 ds, (29)

wherehr stands for the ‘r’th mean curvature ofΣ in Π with respect to the outward pointing
unitary normal. Moreover, the equality holds if and only if M is totally umbilical.

Proof. We may assume without loss of generality that the constantHr is positive. Otherwise,
we know from Corollary 1 that the hypersurface is itself hyperplanar and Eq. (29) trivially
holds since〈ν, a〉 = 0 on∂M.

Choosing the constant Killing fieldY = a in Eq. (28) and integrating onM, we obtain
by the divergence theorem that

−(n − r)

(
n

r

)∫
M

(H1Hr − Hr+1)〈a,N〉 dM

=
∮
∂M

〈Trν, a〉 ds − n − r

n

(
n

r

)
Hr

∮
∂M

〈ν, a〉 ds. (30)

SinceN anda are in the same time-cone, then〈a,N〉 ≤ −1 < 0. In the case, wherer = 1,
the termH1Hr −Hr+1 reduces toH 2

1 −H2, which by Cauchy–Schwarz inequality clearly
satisfiesH 2

1 −H2 ≥ 0, equality holding at umbilical points. For the general case, we know
from Corollary 1 that

Hr−1 ≥ H
(r−1)/r
r > 0,

and also

H1 ≥ H
1/(r−1)
r−1 ,

with equality only at umbilical points. On the other hand, it is known ([13], Theorem 55)
thatH 2

r − Hr−1Hr+1 ≥ 0, equality holding at umbilical points, so that

Hr+1 ≤ H 2
r

Hr−1
.

Therefore

H1Hr − Hr+1 ≥ Hr

Hr−1
(H1Hr−1 − Hr) ≥ Hr

Hr−1
(H1Hr−1 − H

r/(r−1)
r )

= Hr(H1 − H
1/(r−1)
r−1 ) ≥ 0,
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with equality at the umbilical points of the hypersurface. Therefore, from Eq. (30), we
conclude that∮

∂M

〈Trν, a〉 ds ≥ n − r

n

(
n

r

)
Hr

∮
∂M

〈ν, a〉 ds, (31)

with equality if and only if the hypersurface is totally umbilical. Finally, using Lemma 2,
Eq. (31) becomes Eq. (29). �

7. Hypersurfaces with constant extrinsic higher order mean curvature

We are now ready to prove Theorem 2. Suppose that therth mean curvatureHr is
constant, wherer is now odd, and that the boundaryΣ = x(∂M) is a round sphereSn−1(ρ)

of radiusρ > 0. In that case, we have thatτi = −1/ρ, for everyi = 1, . . . , n − 1, so that
hr = −1/ρr .

Proof of Theorem 2 (When 1≤ r < n). If r < n, then we may apply Proposition 2 and
the inequality Eq. (29) becomes∮

∂M

〈ν, a〉r+1 ds ≤ −ρrHr

∮
∂M

〈ν, a〉 ds = ρrHr

∣∣∣∣
∮
∂M

〈ν, a〉 ds

∣∣∣∣ , (32)

since we also know from Eq. (22) that∮
∂M

〈ν, a〉 ds = n

∫
M

H1〈a,N〉 dM < 0. (33)

Indeed, we may assume without loss of generality, as in the proof of Theorem 1, that the
constantHr is positive, and

H1 ≥ H
1/r
r > 0. (34)

Otherwise, we know from Corollary 1 that the hypersurface is a hyperplanar ball. Besides,
Eq. (32) becomes an equality if and only ifM is totally umbilical.

On the other hand, by the Holder inequality, we obtain that∣∣∣∣
∮
∂M

〈ν, a〉 ds

∣∣∣∣ ≤
(∮

∂M

〈ν, a〉r+1 ds

)1/(r+1)

Ar/(r+1)
ρ ,

or, equivalently,∮
∂M

〈ν, a〉r+1 ds ≥ 1

Ar
ρ

∣∣∣∣
∮
∂M

〈ν, a〉 ds

∣∣∣∣
r+1

. (35)

Moreover, from Eqs. (33) and (34), also using Eq. (14), we get∣∣∣∣
∮
∂M

〈ν, a〉 ds

∣∣∣∣ ≥ nH1/r
r

∫
M

(−〈a,N〉)dM = nH1/r
r vol(D) = ρH

1/r
r Aρ, (36)
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which jointly with Eq. (35) implies∮
∂M

〈ν, a〉r+1 ds ≥ ρrHr

∣∣∣∣
∮
∂M

〈ν, a〉 ds

∣∣∣∣ .
This means that we have the equality in Eq. (32) and thenM must be umbilical. This finishes
the proof of our result whenr < n. �

Observe that this proof does not workr = n is odd. For that case, we will provide another
proof which uses the ideas of our proof of Theorem 1. In fact, this new proof works not
only whenr = n is odd but also whenr > 1 is odd.

Proof of Theorem 2 (When 1< r ≤ n). As usual, we may assume that the constantHr is
positive. Sincer is odd,hr−1 = 1/ρr−1 and our flux formula (23) becomes∮

∂M

〈ν, a〉r ds = −ρrHrAρ < 0. (37)

Now, the key of the proof is to realize that the function〈ν, a〉 does not vanish on∂M. This
follows from Eq. (16). In fact, if there exists a pointp0 ∈ ∂M, where〈ν, a〉(p0) = 0, then
from Eq. (16), the constantHr = Hr(p0) = 0 becauser ≥ 3, which cannot be possible.
Therefore, the function〈ν, a〉 does not vanish on∂M, and from Eq. (37), it is necessarily
negative on∂M. Therefore,|〈ν, a〉|r = −〈ν, a〉r , and by the Holder inequality, we also
know from Eq. (37) that∣∣∣∣

∮
∂M

〈ν, a〉 ds

∣∣∣∣ ≤
(

−
∮
∂M

〈ν, a〉r ds

)1/r

A(r−1)/r
ρ = ρH

1/r
r Aρ.

From here, the proof works as the proof of Theorem 2. �
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