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Abstract

In this paper, we develop a series of general integral formulae for compact spacelike hyper-
surfaces with hyperplanar boundary in tie+ 1)-dimensional Minkowski space—tinig'+1. As
an application of them, we prove that the only compact spacelike hypersurfakéslimaving
constant higher order mean curvature and spherical boundary are the hyperplanar balls (with zero
higher order mean curvature) and the hyperbolic caps (with nonzero constant higher order mean
curvature). This extends previous results obtained by the first author, jointly with Pastor, for the case
of constant mean curvature [J. Geom. Phys. 28 (1998) 85] and the case of constant scalar curvature
[Ann. Global Anal. Geom. 18 (2000) 75]. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The study of spacelike hypersurfaces in Lorentzian space—-times has been of increasing
interest in recent years from both physical and mathematical points of view. From a phys-
ical point of view, such interest is motivated by their role in different problems of general
relativity. For instance, Lichnerowicz [14] showed that zero mean curvature spacelike hy-
persurfaces are convenient as initial data for solving the Cauchy problem of the Einstein
equations. We also refer to [8,12,15,20] and references therein for other reasons justifying
that interest.
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From a mathematical point of view, spacelike hypersurfaces are also interesting because
of their nice Bernstein-type properties. Recall that the Bernstein problem for maximal
hypersurfaces in the Minkowski space—tifiie ! was firstintroduced by Calabi [10], where
he found that, for < 4, the only entire solutions to the maximal hypersurface equation in
L"*+1 are affine functions. This result was extended to the gemegithensional case by
Cheng and Yau [11], who proved that the only complete maximal hypersurfad#s in
are the spacelike hyperplanes. On the other hand, Aiyama [1] and Xin [21] simultaneous
and independently characterized the spacelike hyperplanes as the only complete spacelike
hypersurfaces with constant mean curvatur&’ini! whose Gauss map image is bounded
in the hyperbolic image (see also [17] for a weaker first version of this result by Palmer).

In a series of recent papers, the first author, jointly with Pastor, studied the geometry of
compact spacelike hypersurfaces (necessarily with non-empty boundary) in the Minkowski
space—-time. In particular, in [5], they showed that the only such hypersurfaces having
constant mean curvature and round spherical boundary are the hyperplanar balls and the
hyperbolic caps [5] (see also [3] for a first two-dimensional version of this result). As for
the case of the scalar curvature, they characterized the hyperbolic dapstias the only
compact spacelike hypersurfaces in the Minkowski space—time with nonzero constant scalar
curvature and spherical boundary [6].

Their approach to obtain those results in [5,6] was based on the use of certain integral
formulae for the case, where either the mean curvature or the scalar curvature is constant.
In this paper, we will develop a series of general integral formulae for compact spacelike
hypersurfaces with hyperplanar boundaryLifi-1, for the case where a higher ordeh
mean curvature is constant=<lr < n. Let us recall that the higher order mean curvatures
H, of a hypersurface are the natural generalization of mean and scalar curvature. Indeed,
H, is simply the (extrinsic) mean curvature of the hypersurfacefanid, up to a constant,
its (intrinsic) scalar curvature (for details, see Section 2). In particular, we will derive a flux
formula (see Proposition 1 and formula (23)) which extends to the general case previous flux
formulae givenin [5]when = 1 andin [6] whenr = 2 (we also refer to the recent paper by
Bahn and Hong [7] for another interesting flux-type formula for spacelike hypersurfaces in
L"+1, with interesting applications to isoperimetric and some other geometric inequalities).

As a first application of this new flux formula, we are able to extend and generalize the
characterization theorem given in [6] for the case of scalar curvature to the case of any
intrinsic curvature. Specifically, we will obtain the following uniqueness result.

Theorem 1. The only compact spacelike hypersurfaces in the Minkowski space—time with
constant intrinsic higher order mean curvatufé (2 < r < n, r even) and spherical
boundary are the hyperplanar balls (with, = 0) and the hyperbolic caps (with positive
constantH,).

Besides, we also develop a new integral inequality (see Proposition 2) which extends an
inequality given in [5] whenr = 1. Using this inequality, we are also able to extend our
unigueness theorem to the case of any extrinsic curvature.

Theorem 2. The only compact spacelike hypersurfaces in the Minkowski space—time with
constant extrinsic higher order mean curvatui® (1 < r < n, r odd) and spherical
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boundary are the hyperplanar balls (witth. = 0) and the hyperbolic caps (with nonzero
constantH,).

2. Preliminaries

Let L"*+1 denote thén + 1)-dimensional Minkowski space—time, that is, the real vector
spaceR™t1 endowed with the Lorentzian metric

()= -G+ d& + - +d¥,

where (xg, x1, ..., x,) are the canonical coordinates kft1. A smooth immersion :
M" — 1L"*1 of an-dimensional connected manifold is said to be apacelike hyper-
surfaceif the induced metric via is a Riemannian metric oW, which, as usual, is also
denoted by, ). Observe thatl, 0, ..., 0) is a unit timelike vector field globally defined
onlL”*1, which determines a time-orientation bfit1. Thus, we can choose a unique unit
normal vector fieldvV on M which is a future-directed timelike vector it 1, and hence
we may assume that is oriented byN.

In order to set up the notation to be used later, let us denot@®andV the Levi—Civita
connections oL.”t1 and M, respectively. Then the Gauss and Weingarten formulagffor
in L"*1 are written, respectively, as

VY = Vx¥ — (AX Y)N, 1)
and
A(X) = —VIN, (2)

for all tangent vector fieldX, Y € X (M), whereA stands for the shape operator with
respect tav.

Associated to the shape operatorMfthere aren algebraic invariants, which are the
elementary symmetric functions of its principal curvatutes . ., k, given by

Sy =Stk .. k)= > kiy...k,, 1<r=<n

i1<--<ip

Following [2], we define thé&’'th mean curvatureH, of the spacelike hypersurface by

(’:) H = (=S k1, ... kn) = Sp(—k1, ..., —kn), 1<r<n.

Observe thatwhen= 1, H1 = —(1/n) tr(A) = H is the mean curvature @f. The choice

of the sign(—21)" in the above definition of{, is motivated by the fact that in that case the
mean curvature vector is given by= HN. Therefore H(p) > 0 at a pointp € M if and

only if H(p) is in the time-orientation determined by p). On the other hand, when= n,

H, = (—1)" det(A) defines the Gauss—Kronecker curvature of the spacelike hypersurface,
and forr = 2, Hz is, up to a constant, the scalar curvatief M, sinceS = —n(n — 1) H>.

In general, it follows from Gauss equation of the hypersurface that whsrodd H, is
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extrinsic (and its sign depends on the chosen orientation), while wigevenH, is an
intrinsic geometric quantity.

Throughout this work, we will deal wittompactspacelike hypersurfaces immersed
in L"*1, Let us remark that there exists no closed (compact without boundary) spacelike
hypersurfaces ifi.” 1. To see this, let € L."*1 be a fixed arbitrary vector, and consider
the height functiona, x) defined on the spacelike hypersurfade The gradient oM/ of
{a, x)is

Vi{a,x)=da' =a+ (a, N)N,

wherea” € X(M) is tangent taM. In fact, it is easy to see that= a' — (a, N)N, and
foranyX € X (M), we have

(Via, x), X) = X{a, x) = (VSa, x) + (a, Vox) = (a, X).
From this, we conclude that
IVia, x)|?> = (a,a) + (a, N)?> > (a, a).

In particular, wheru is spacelike the height function has no critical pointsvin so that
M cannot be closed. Therefore, every compact spacelike hypersuffasxessarily has
non-empty boundary M. As usual, ifX is an(n — 1)-dimensional closed submanifold in
L"*+1, a spacelike hypersurfage: M — L"*1 s said to be a hypersurfagéth boundary
X if the restriction of the immersiom to the boundarg M is a diffeomorphism ontd.

In what follows,x : M — L"+1 will be a compact spacelike hypersurface with bound-
ary aM, and we will consideM oriented by a unit timelike normal vector fiefd. The
orientation of M induces a natural orientation @M as follows: a basigv, ..., v,_1}
for T,,(d M) is positively oriented if and only ifu, vy, ..., v,—1} is a positively oriented
basis forT,, M, whenevew € T, M is outward pointing. We will denote by the outward
pointing unit conormal vector field alorigV.

A specially interesting case occurs when the boundary- x(d M) is contained in a
fixed hyperplandT of L"+1. We will refer to it saying thaf/ hashyperplanarboundary.
Since X is closed, it follows that the hyperplar is spacelike. We can assume without
loss of generality thalll passes through the origin affl = o, for a unit timelike vector
a € "1 in the same time-orientation . The following lemma and its corollary below
will be essential later on.

Lemma 1 (Existence of an elliptic point)Letx : M — L"*1 be a spacelike immersion

of a compact hypersurface with hyperplanar boundary= x(dM), and assume that

¥ is contained in a hyperplanél = a=, ‘a’ being a unit timelike vector in the same
time-orientation as N. Then there exists a pgigte int(M) where (after an appropriate
choice of orientation on M) all the principal curvatures are negative, unless the hypersurface
is entirely contained in the hyperplarié.

Proof. Let us assume that the hypersurface is not entirely contained in the hypefplane
Then, there exists a point € int(M), where(x(p),a) # 0. We may assume without
loss of generality thatx(p), a) < 0. Otherwise, just replace by —a and change the
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orientation onM (recall that we are assuming that the timelike vectoes\d N are in the
same time-cone). Lét € IT be the projection ok(p) ontoI1, b = x(p) + (x(p), a)a,
and let us denote b’} (b, p) the connected component @f — b, g — b) = —p? which
satisfieslq — b, a) = (g, a) < 0, that is,

H (b, p) = {q € L"" (g — b, q — b) = —p?, (g, a) < O}.

SinceM is compactH'; (b, p) does not interseat(M) for largep. As p decreases, there
exists an interior poinpg € int(M), whereH’, (b, p) touchesx(M). Such a pointpg
satisfiegx (po), a) < 0 and itis a local maximum point for the functian= (x — b, x — b)
defined onM. In particular, its gradient vanishes gg, Vu(pg) = 0, and its Hessian
satisfies

Vzupo(v, v) <0
for every tangent vectar € T, M. Itis easy to see thalu = 2(x — b)T, where
(x—b) =x—b+(x—b,N)N

is tangent taf. Taking covariant derivative here and using Gauss (Eq. (1)) and Weingarten
formulae (Eq. (2)), we also see that

V2u(X,Y) = 2(X,Y) — 2(x — b, NY(AX, Y), forX,Y e X(M).

FromVu(pg) = 0, it follows that

(x(po), a)
—b,N =——"""<0. 3
(x(po) (po)) N (o). ) 3)
Besides, lef{es, ..., e,} be a basis of principal directions @b satisfying A ,,(e;) =

ki (po)ei. Then
VU py(ei, e) = 2[1— (x(po) — b, N(po))ki(po)] < O,
which from Eq. (3) gives

1
ki < 0. O
(PO) = h0) — b, N(p0))

Corollary 1. Letx : M — LL"*1 be a spacelike immersion of a compact hypersurface
bounded by afin — 1)-dimensional submanifold = x(d M), and assume thaX is con-
tained in a hyperplanél = o, ‘a’ being a unittimelike vector in the same time-orientation
as N. If the ‘r'th mean curvaturéd, is constant, then eithell, = 0 and the hypersurface

is just the hyperplanar domain iff bounded byX, or (after an appropriate choice of
orientation on M)H, is positive and it holds that

H>H?>..>H'YY =1 >0

Besides, equality holds at any stage only at umbilical points.
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Proof. Let us assume that the hypersurface is not the hyperplanar domAirbounded

by ¥. Then, there exists a pointp € M, where all the principal curvatures are neg-
ative. The result then follows from the proof of [16] (Lemma 1) (see also [9] (Section
12)), taking into account the sign convention in our definition of the higher order mean
curvatures. O

3. A flux formula

In this section, we will derive a flux formula for compact spacelike hypersurfaces in the
Minkowski space—time. In order to do that, we will introduce the corresponding Newton
transformationd; : X(M) — X (M) associated with the second fundamental form, which
according to our definition of theth mean curvatures are given by

n n n _ -
Tr=<r>HrI+(r_1>H,_1A+-~-+<1)H1A’ tyar,

wherel denotes the identity i’ (M), or inductively,
To=1 and T, = (:’) H. I +AT,_1. (4)

Observe that the characteristic polynomialdo€an be written in terms of thH,’s as

n

dett —A) = > | (’j) Hot"", (5)

r=0

whereHp = 1 by definition. By Cayley—Hamilton theorem, this implies tiiat= 0.

Let us remark thaf, = (—1)" P, whereP, is the classicatth Newton transformation
defined by Reilly in [18] (see also [19] for a more accesible modern treatment). Observe
that the Newton transformatioris are all self-adjoint operators which commute with the
shape operatof. Besides, we have the following nice propertiegof

1. If {e1, ..., e,} is alocal orthonormal frame oM which diagonalizesA, Ae = k;e;,
then it also diagonalizes ea@h, and7,¢; = u; re; with

iy = (1" Sptkr o kin k) = (DT Y ki,

i1 <e<lp,ij L

n

2. Foreachlgr§n—1,tr(T,)=(r+1)<r+l

) H,., and

tr(AT,) = —(r + 1) <r j— 1) Hyi1. (6)

3. ForeveryX € X(M) andforeach Xk r <n — 1,

n

tr(T,VxA) = — <r b1

) (VH, 41, X).
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4. The Newton transformatior®% are divergence free, that is,
divy (T;) =tr(X — (VxT,)X) = 0. )

LetY e X(L"*1) be aKilling vector field or.”+1. We can write the restriction df to M
asY = Y' — (¥, N)N, whereYT € X(M) is tangent taM. Our objective is to compute
divy (T, YT). Taking into account tha¥x 7, is self-adjoint for anyX € X (M), an easy
computation using Eq. (7) shows that

n n
diva (T,YT) = (diva (T,). Y) + D (Ve YT, Tre)) = Y (Vo YT, Trei), ®)
i=1 i=1
wheref{es, ..., e,} is a local orthonormal frame oM. Let X be a tangent vector field to

M. From Killing equation, we know that
(VO xY. X) + (V3Y, T,X) =0,
which gives
(VxYT, X) + (VxYT, T, X) = —2(Y, N)(AT, X, X). (9)

Computing in a local orthonormal frame @ that diagonalizegl, and hencd;,, we have
by (1) above that

(Vi YT, e) = nir (Ve YT e) = (Ve YT, Trer),
so that from Eqg. (9)
(Vo. YT, Tre;) = —(Y, N)(AT,e;, e;).
Therefore, we conclude from Eg. (8), using also Eqg. (6), that

n

divy (T, YT) = —(Y, N)tr(AT,) = (r + 1) (r 1

) H, 1Y, N). (10)

Now integrating Eq. (10) oM, we have by the divergence theorem that

jéMmu, Y)ds = /M divy(T,YHdM = (r + 1) (r i 1) /M H, 1(Y,N)dM,
foreveryO<r <n-—1 (12)

Here, dv stands for the-dimensional volume element @f with respect to the induced
metric and the chosen orientation, ardsthe inducedrn — 1)-dimensional volume element
onoM.

On the other hand, considBxis a compact orientable hypersurfacd.8f ! with smooth
boundary that satisfiesD = M. Assume that¥ U D is an orientedi-cycle of L"*1,
Let np be the unit normal that orient®. From the Alexander duality theorem, we have
that M U D = 352, where2 is a compact oriented domain immersedLitit. From
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Killing equation again,(VgY, Z) = 0 for all Z € X(IL"+1), from which it follows that
divy»+1Y = 0. Therefore, from divergence theorem, we have

/ (Y,np)dA = —/ (Y, NydM. (12)
D M
Here, d4 stands for the:-dimensional volume element @ with respect to the induced
metric and the chosen orientation.

Therefore, in the case where the hypersurface has some higher order mean cuéfyvature
constant, we obtain from Egs. (11) and (12), the followflng formulafor immersed space-
like hypersurfaces with constant higher order mean curvature in the Minkowski space—time.
The corresponding formula for hypersurfaces in Euclidean space can be found in [19]; see
also [4] for the others Riemannian space forms.

Theorem 3. Letx : M — L"*! be a spacelike immersion of a compact hypersurface
with boundaryd M, and let ‘D’ be a compact orientable hypersurfaceldf-1 with smooth
boundary that satisfie8D = oM. Letnp be the unit normal that orients D. If the ‘r'th
mean curvature, is constant]l < r < n, then for any Killing vector field Y oh”*1

f (Tr_qv, Y)ds = —r <”) H,/ (Y, np)dA. (13)
oM r D

Here,v is the outward pointing conormal to M alorégV.

Let us assume from now on that has hyperplanar boundary. We may assume without
loss of generality that the boundary is contained in a hyperplanehich passes through
the origin, and7T = a, for a unit timelike vector € L"+1 in the same time-orientation as
N. Inthis situation, by considering the constant Killing fi#ld= a, we have that p = —a,
and hence we know from Eq. (12) that

vol(D) = —/ (a, NydM. (14)
M
This allows us to state the following result, which generalizes Proposition 2 in [5].
Proposition 1. Letx : M — L"+1 be a spacelike immersion of a compact hypersurface
bounded by arin — 1)-dimensional embedded submanifald= x (9 M), and assume that
¥ is contained in a hyperplang of L"*1. Let ‘a’ be the unit timelike vector ih*+* such

that IT = a' which is the same time-orientation as N. If the ‘r'th mean curvakijrés
constant, then thé — 1)-flux

% (Ty_1v,a) ds
aM

does not depend on the hypersurface, but only on the valtg ahd X'. Actually,
j{ (Ty_1v,a)ds = —r (”) H, vol(D), (15)
oM r

where D is the domain it/ bounded by
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4. An essential auxiliary lemma

In this section, our aim is to compute the tetfMv, a) on the boundary oM in terms
of the curvatures of the boundary. To do that, {let, ..., e,—1} be a (locally defined)
positively oriented frame field alonf. Since(a, x) = 0 on the boundary, thefa, ¢;) =
Oforeveryl<i <n—1,anda’ = (v,a)v ondM. On the other hand, let be the
outward pointing unitary normal t&' in I7. Observe tha = e¢; x --- x ¢,_1 x a, and
similarlyv = e3 x - -+ x ¢,_1 x N, with the conditionals détj,e; ..., e,—1,a) = 1 and
det(v,e1...,e,—1, N) = 1. Hence, we compute

<U, n) = det(v7 elv MR ] gﬂfl? a) = det(va ela MR ] el’l*l’ <U’ a>l) - <a7 N>N)
= _<a» N)det(\}, €1,...,€p-1, N) = —<Cl, N)v
and, similarly,
<N7 77) = _<V, Cl).

Let Ay denote the shape operatorDf(as an(n — 1)-dimensional hypersurface of the
Euclidean spacél = E") with respect to the normajl. Note that the inclusiofl ¢ L"**
is totally geodesic, and so we have

n—1
Vgei = Z(Vgei, ex)er + (ngei, V)V — (A(e;), e;)N, foreveryl<i,j<n-—1
« e
and also
n—1
Voei =y (Ve ex)ex + (As(e), ej)m,
k=1
so that
(Ag,ej) = (Axei,ej)(n, N) = —(Axe;, ej){v,a),
since we have already observed thatN) = —(v, a).
We now suppose that the bagés, .. ., e,—1} on the boundarg M is chosen such that it

is formed by the eigenvectors dfy, with eigenvalues given by, that is
Aye; =1ie;, l<i<n-—-1

Hence(Ag, ¢;) = Owheni # j, and for eaclp € 9 M, the matrix ofA in the orthonormal
basis{es, ..., e,_1, v} of T, M is given by

—11{v, a) 0 0 (Av, e1)
0 —(v,a) --- 0 (Av, e2)
A= ; : . ; :
0 0 o —Trea(v,a)  (Av,en-1)

(Av,e1)  (Av,ez) -+ (Av,en1)  (Av,v)
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This expression invites us to compute the characteristic polynomial @b do that, we
begin by observing that the following recursive formula holds:

k-1
Ak = (1 + (v, a)) Ak—1 — (Av, ex)? l_[(t +1j(v,a)), foreveryk, 1<k<n—1,
j=1

whereA; = def(tl;+1— Ay) denotes the characteristic polynomial of the-1)-dimensional
matrix

—11{v, @) 0 0 (Av, e1)
0 —12{v,a) --- 0 (Av, e3)
A = : : . : :
0 0 oo —=e(v,a)  (Av,er)
(Av, e1) (Av,e2) -+ (Av,eg) (Av, v)

In particular,A,_1 = def(tl, — A) is the characteristic polynomial of, and therefore,
applying a simple induction argument, we obtain

n—1 n—1 n—1
det(tl,—A) = (t—(Av, v) [ e+t (v.ap—) (Av.ep)? [] (+z(v.a)
i=1 i=1 j=1,j#i
n—1 n—1 n—2
=(t—(Av, ) Zsi(v, a)i " Z (Av, ;)2 Z s (T (v, a)l =i,
i=0 i=1 j=0
wheres, (s, (%;), respectively) are the symmetric functionsef. .., t,-1, (t1, ..., Ty . . .,

7,—1, respectively), and, as usuah = 1 by definition. Comparing the terms of above
polynomials, we conclude from Eq. (5) that

<n> r r r—1
HI‘ = (_1) Sr = sr(‘)’ a> - sr71<V, a> (AU, U)
r

n—1
—(v, @) 72 s 2(F)(Av, €)?, (16)

i=1

wheres_1 = s, = 0 by definition. Now, we are ready to state and prove the following
essential auxiliary result.

Lemma 2. Letx : M — L"*1 be a spacelike hypersurface with hyperplanar boundary
¥ = x(dM), and assume tha¥ is contained in a hyperplad& = a*, ‘a’ being the unit
timelike vector which is the same time-orientation as N. Then

(Tyv,a) = s, (v,a)*t, forevery0<r <n—1, (17)

wheres, are the symmetric functions of the eigenvaluea gf the shape operator af' in
IT with respect to the outward pointing unitary normal.
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Proof. We first note that Eq. (17) trivially holds fer= 0. Besides, observe that
(Tyv,a) = (T,v,a') = (v, a)(T,v, v). (18)

Hence, it suffices to computd;, v, v) whenr > 1. For this, we use induction an For
r = 1, Eq. (16) becomesH; = s1({v, a) — (Av, v), which implies(Tyv, v) = s1(v, a).
Suppose that

(Tjv,v) =s;{v,a)/, forallj, 1<j<r (19)

Therefore, from the inductive definition @f in Egs. (4) and (19), we have

(Tyv, v) = (’j) H, + (T,_1v, Av)

n—1
= (f) H, + Z(Av, e {Ty—1v, e;) + (Av, v){T,_1v, v)
i=1

n—1
= (Z) H, 4> (Av, e;)(T,—1v, &) + s,-1(v, a)" " {Av, v). (20)
i=1

On the other hand, we also know that
Ae = —1;(v,a)e; + (Av, ¢;)v,

so that from our induction hypothesis Eqs. (4) and (19), we have
(Tjv, e;) = (Tj—1v, A&) = —7; (v, a)(Tj_1v, &) + s;_1(v, a)) "H(Av, &),
foreveryO< j <r.

This implies by a recursive argument that
r—2 o
(T, ey = | D (DIt s, 2 | (v.a) (A, &) (21)
j=0
Now, it is not difficult to see that

m
sm(%) = Z(—l)-/ri’sm_j, foreveryl<m <n —1,
=0

so that Eq. (21) becomes

(Tr—1v, &) = s,—2(3) (v, @) "2(Av, ¢;).

Using this in Eq. (20), together with the expression (o:rl) H, given in Eq. (16), we
conclude that

(TrV’ U) = SV<U, a)ra
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which jointly with Eq. (18) gives the desired formula (17). This finishes the proof of
Lemma 2. O

Let us denoter, by the rth mean curvature of the bounday as an Euclidean
(n — 1)-dimensional hypersurface &f = E”. That is

r

<n - 1> h, =s,, foreveryl<r<n-—1.
Then, using Lemma 2 in formula (11) with = a, we obtain that

jﬁ hy_1{v,a) ds = n/ H,{a, NYdM, foreveryl<r <n, (22)
M M

since(': > = (f _i . In particular, if therth mean curvaturél, is constant, Lemma
. _

2 allows us to rewrite our flux formula (15) as

% hy_1{v,a) ds = —nH, vol(D). (23)
aM

Remark 1. It is interesting to remark that, in contrast to the Euclidean case, Eq. (23)
does not imply here any restriction on the possible values of the congtantean cur-
vature. For instance, in [4], it is shown that ¥ = s"~1is an (n — 1)-dimensional
sphere of radius one and is an immersed compact hypersurface in the Euclidean space
bounded byS”‘1 whoserth mean curvaturdd, is constant, then we have that €

|H,| < 1. However, in the case of the Minkowski space—time, the family of hyperbolic
caps

M, ={x el (x,x) = =220 <x0 <vV1+212}, withO <1 < oo,

describes a family of spacelike compact hypersurfaces”int bounded byS"~1 with
constantth mean curvaturéf, (A) = 1/1".

5. Hypersurfaces with constant intrinsic higher order mean curvature

We are now in a position to prove our Theorem 1. Suppose thatiheean curvaturél,
is constant, where is even, and that the boundaEy= x(d M) is a round spher8"1(p)
of radiusp > 0. In that case, we have that= —1/p, foreveryi = 1,...,n — 1, so that
hy—1 = —1/p"~1. Besides, valD) = pA,/n, whereA, = aredS"~(p)). Then our flux
formula (23) becomes

% (v,a)"ds = p"H,A,. (24)
oM

We may assume without loss of generality that the congtans positive. Otherwise, we
know from Corollary 1 that the hypersurface is a hyperplanar ball. By the Holder inequality,
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we obtain from Eq. (24) that

1/r
ngw,a)ds < <£M(U,a)’ ds> AUV — oI A, (25)

On the other hand, we know also know by Corollary 1 that

Hy > H" >0,
with equality only at umbilical points. Therefore, we have
nHy(—(a, N)) = nH" (—(a, N)) > 0, (26)

with equality if and only ifM is totally umbilical. Besides, we also know from Eq. (22) that

% (v,a)ds:n/ Hi{a, NYdM < 0.
M M

Then, integrating Eq. (26) oM and using Eq. (14), we deduce that

f (v, a)ds
oM

with equality if and only if M is totally umbilical. Finally, from Eq. (25), we have the
equality in Eq. (27) and thed/ must be umbilical. This finishes the proof of our
result.

:nf Hi(—(a, N))dM > nH}/r/ (—(a, N)dM
M M

=nHY" vol(D) = ,oH,l/"Ap, (27)

6. Anintegral inequality

In this section, we will derive an integral inequality which, jointly with our flux formula
in Proposition 1, will allow us to prove our result for the case of extrinsic higher order mean
curvatures. To do that, observe that from Eq. (10) wita 0, we know that

divy (YT = nHy(Y, N),
for a Killing vector fieldY onlL”*1, and also

n

divy (T,Y") = (r + 1) <r+1

) Hy11(Y, N).
Therefore, ifH, is constant, we conclude that

divy, (T,YT—E <’:) H,YT> ——(n—-r) (’:) (HiH, — Hos)(Y, N).  (28)

n

This equation is the key for the proof of the following result, which generalizes and integral
inequality given in [5] (Proposition 3). It is worth pointing out that Eq. (28) is meaningful
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whenr < n — 1, since forr = n, we know that7,, = 0 and both sides of Eq. (28) trivially
vanish.

Proposition 2. Letx : M — L"*! be a spacelike immersion of a compact hypersurface
bounded by arin — 1)-dimensional embedded submanifald= x (d M), and assume that

¥ is contained in a hyperplang of L"*1. Let ‘a’ be the unit timelike vector i+ such
that I7 = a1 which is the same time-orientation as N. If the ‘r'th mean curvakirés
constant, withlL < r < n — 1, then

f hy(v,a) ttds > Hry{ (v, a)ds, (29)
oM oM

whereh, stands for the ‘r'th mean curvature a&f in I7 with respect to the outward pointing
unitary normal. Moreover, the equality holds if and only if M is totally umbilical.

Proof. We may assume withoutloss of generality thatthe congfaigtpositive. Otherwise,
we know from Corollary 1 that the hypersurface is itself hyperplanar and Eq. (29) trivially
holds sincgv, a) = 0ondM.
Choosing the constant Killing field = a in Eqg. (28) and integrating oM, we obtain
by the divergence theorem that

—(n—r) (f ) /M(HlHr — Hyy1){a, N)dM

:% (T,v,a)ds—n_r(n>Hry§ (v, a) ds. (30)
oM n r oM

SinceN anda are in the same time-cone, thén N) < —1 < 0. In the case, whene= 1,

the termH; H, — H,,1 reduces toHl2 — H», which by Cauchy—Schwarz inequality clearly
satisfiesHl2 — Hy > 0, equality holding at umbilical points. For the general case, we know
from Corollary 1 that

H1>H'Y" >0,
and also

H= 1YY,

with equality only at umbilical points. On the other hand, it is known ([13], Theorem 55)
thatH,2 — H,_1H,,1 > 0, equality holding at umbilical points, so that

HZ
Hr+1§
r—1
Therefore
H, H, 1
HiH, — Hy1> ——(HiH,_1 — H,) = ——(HiH,_1 — H/"™Y)
Hy 1 Hy 1

=H,(Hi—H'{™Y) >0,
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with equality at the umbilical points of the hypersurface. Therefore, from Eq. (30), we
conclude that

% (T,v,a)ds > nor (n)H,% (v, a)ds, (31)

aM n r oM

with equality if and only if the hypersurface is totally umbilical. Finally, using Lemma 2,
Eq. (31) becomes Eq. (29). O

7. Hypersurfaceswith constant extrinsic higher order mean curvature

We are now ready to prove Theorem 2. Suppose thatthenean curvatured, is
constant, whereis now odd, and that the bounda¥y= x(d M) is a round spher@"‘l(p)
of radiusp > 0. In that case, we have that= —1/p, foreveryi = 1,...,n — 1, so that
hy = _1/:0r-

Proof of Theorem 2 (When 1< r < n). If r < n, then we may apply Proposition 2 and
the inequality Eq. (29) becomes

% (v, a) ttds < —p’H,% (v,a)ds = p" H, f (v, a)ds|, (32)
oM oM M
since we also know from Eg. (22) that
% (v,a)ds = n/ Hi{a, NYdM < 0. (33)
M M

Indeed, we may assume without loss of generality, as in the proof of Theorem 1, that the
constantH, is positive, and

Hi>HY >0 (34)

Otherwise, we know from Corollary 1 that the hypersurface is a hyperplanar ball. Besides,
Eqg. (32) becomes an equality if and onlyMf is totally umbilical.
On the other hand, by the Holder inequality, we obtain that

1/(r+1)
‘(f (v,a)ds| < (% (v,a)’+1ds> A;/(r-lrl)’
oM oM

or, equivalently,
r+1 1
(v,a) " ds = — (v,a)ds
M Al | Jam

Moreover, from Egs. (33) and (34), also using Eq. (14), we get

% (v, a)ds
aM

r+1
(35)

> nH}/’/ (—(a. N))dM = nHY"vol(D) = pH,"" A,, (36)
M
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which jointly with Eq. (35) implies

f (v, a)ds
oM

This means that we have the equality in Eq. (32) and tdenust be umbilical. This finishes
the proof of our result when < n. O

f (v,a)"Ttds > p"H,
oM

Observe that this proof does not wark= » is odd. For that case, we will provide another
proof which uses the ideas of our proof of Theorem 1. In fact, this new proof works not
only whenr = n is odd but also when > 1 is odd.

Proof of Theorem 2 (When 1< r < n). As usual, we may assume that the constgnis
positive. Since is odd,,_1 = 1/p" 1 and our flux formula (23) becomes

% (v,a)'ds = —p"H,A, <O. (37)
M

Now, the key of the proof is to realize that the functigna) does not vanish oM. This
follows from Eq. (16). In fact, if there exists a poipg € dM, where(v, a)(po) = 0, then
from Eq. (16), the constar, = H,(pg) = 0 because > 3, which cannot be possible.
Therefore, the functiofv, a) does not vanish oM, and from Eq. (37), it is necessarily
negative oo M. Therefore|(v, a)|” = —(v, a)", and by the Holder inequality, we also
know from Eq. (37) that

1/r
y{ (v,a)ds| < (-% (v,a)’ds> Ay =pHY"A,.
oM oM

From here, the proof works as the proof of Theorem 2. O
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